If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x-729=0
a = 4; b = 12; c = -729;
Δ = b2-4ac
Δ = 122-4·4·(-729)
Δ = 11808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11808}=\sqrt{144*82}=\sqrt{144}*\sqrt{82}=12\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{82}}{2*4}=\frac{-12-12\sqrt{82}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{82}}{2*4}=\frac{-12+12\sqrt{82}}{8} $
| x2+47x-150=0 | | x2=26x-120=0 | | n^2-14n-56=-5 | | p2+3p+27=0 | | 6x+7–3x+3=20 | | k^2+10k+16=9 | | 9e-7=72-11 | | 7(n+5)=28 | | y=7+30 | | 8x+13=5x+17+x+21 | | –5=b+2 | | 17-g=6 | | 3(j+5)=27 | | 3=4q–13 | | 13=15+y | | 15+2v=–1 | | 41=17+3s | | 1=b+7 | | –10d–2=–12 | | 7+h=G | | (y+8)+8y=17 | | 8x+(3x-22)=18 | | (b²-11b+10)=+(-b²+5) | | -11/5+2/5y=5 | | 35=0.35•w= | | 1/5n(2+3)=50 | | 20=625+10f | | x,8x-10=-34 | | x,3(x-2)=18 | | 7³x-¹⁷=49x | | 4y^2y=5 | | 2(2x*30)/4=20 |